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The authors examine the influence of a moving liquid on the parameters of inter- 
phase surface waves under film boiling. 

One mechanism for heat and mass transfer in film boiling is the development of waves on 
the interphase surface, leading to the occurrence of convective mixing, an increase of the 
interphase interaction surface and breakdown of the vapor layer due to liquid penetrating to 
the heater surface. The interphase boundary waves result from interaction of infinitely small 
perturbations and the main flow. If the energy of the infinitely small deviations from the 
stationary state exceeds the dissipation energy, an instability develops. 

We consider the influence of a moving liquid on the stability of the interphase surface 
in a coordinate system where the x axis is vertically upward along the heater surface, which 
provides a constant heat flux, and the y axis is normal to this surface. The planar motion 
of an incompressible vapor film is described by the Navier--Stokes equations [i]. We express 
the boundary conditions at the surface of the interphase interaction in a form which allows 
an end result to be obtained analytically. Using the law of conservation of momentum in go- 
ing through the phase change boundary, we can write the normal and tangential stresses in the 
form 

026 (I) P = PI + ]z(1 --PJOOP7 ] - - ~  c?x2 , 

du 
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The normal stresses (I) account for the pressure in the liquid phase, the reactive force 
of phase transition and the surface tension (it is assumed that a~/ax <<I). The tangential 
stresses (2) are obtained from the condition that friction is present on the liquid-vapor 
boundary (Y6) and that the momentum is transferred by the transverse mass flux j (W --u I ._~). 
The existence of a transverse mass flux leads to the velocity profile in the liquid boundary 
layer being fuller than when there is no mass transfer. As a result there is an increase of 
the liquid velocity gradient, and a consequent increase of the tangential stress. Since it 
is difficult to determine T 6 accurately, we shall assume that: 

"~ = 0.Scp~ (W -- uls) 2. (3) 

The kinematic boundary condition for the incompressible vapor film has the form 

0___6_6 4- OU6 _ I/P> (4) 
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The similarity velocity profile is 
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occurs for laminar flow of vapor and always satisfied the boundary eondi=ions. In deriving 
Eq. (5) we took into account that W>>u[5 in most cases. 

Substituting Eq. (5) into the equation of motion in Navier--Stokes form and averaging over 
the transverse coordinate y, we obtain 
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We linearize the equation obtained (6) and the kinematic boundary conditions (4) in the 
neighborhood of the equilibrium state under the condition that the transverse mass flux is 
constant (j = q/r) and that the infinitely small deviations have the form. of the plane waves 

A6 = 8'expi(kx--~t), AU = U"expi(kx--~t)~ (7)  

After transformations, taking account of Eq. (7), gqs. (4) and (6) take the form 
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From the condition that the solution of Eq. (8) be nontrivial (equating the corresponding 
determinant to zero) we obtain the dispersion equation 

oJ z -- o) [kUo ([2, o6o + f3, o + 1) - -  iv2m3, o} - -  ikUo (v*,m4,050 + m3, or2) + kzU2o (f4, o 50 + f3, o) - -  k~9216o = O. (9) 
For real values of k from Eq. (9) we can obtain a picture of the variation of the small 

perturbations of Eq. (7) with time. If the imaginary part of m is negative, the perturbations 
are damped, and when it is posi=ive the instability grows (convective or transport instability). 
The case when the imaginary part of ~ is equal to 0 corresponds to the boundary of instability 
when oscillations will be purely sinoidal (oscillatory instability). 

From analysis of Eq. (9) we can conclude that the solution 
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will be real for the condition 

k = Uo I86o (1 + b) b + T 

where 
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For all perturbation with wave numbers less than those obtained from condition (ii) the 
instability will develop as it drifts upwards with the phase velocity of Eq. (i0). From 
these results and the relation between ~ and k we can write the ratio of wavelengths to phase 
velocities for film boiling of a moving and a stationary liquid: 

~. -- 1 + - ~  54(1 + b )  + - ~ b  , 

~o/k 
- - - - l + b .  co/k (13) 

It can be seen from Eqs. (12) and (13) that in film boiling an increase of the liquid 
velocity (the parameter b) leads to an increase of the phase velocity and a decrease of the 
wavelength. This change of the parameters of interphase surface waves intensifies convective 
mixing, and, as a result, the amount of heat transmitted is increased, compared with the case 
of boiling of a stationary liquid. 

NOTATION 

x,y, longitudinal and transverse coordinates; P, pressure; p, density; ~, surface tension; 
~, film thickness; j, transverse mass flux; W, liquid velocity; u, longitudinal vapor velocity; 
~, dynamic, viscosity; v, kinematic viscosity; g = 9.81(p,/92 -- i), reduced acceleration due 
to gravity; m, angular frequency; k, wave number; ~, wavelength; q, heat flux density, cons- 
tant over the entire heater surface; c, friction coefficient; r, heat of vaporization; i, 
liquid; 2, vapor; 0, stationary value; ~, the case W = O; U, mean velocity; t, time. 
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MASS-TRANSFER EFFECT IN VAPORIZTION IN VACUUM 

A. V. Kondratov and A. A. Potapenko UDC 536.422.4 

The results of theoretical and experimental investigation of mass transfer in the 
case of vaporization in vacuum from a point source onto a substrate of arbitrary 

form are given. 

The investigation of mass-transfer processes in vaporization in vacuum is of great theo- 
retical and applied importance, since the thermovacuum treatment of materials is widely used 
in energetics, mechanical engineering, electronics, and other engineering fields. 

One method of investigating mass transfer is to study the condensate profiles obtained 
on substrates. In connection with this, it is of interest to consider a probabilistic model 
of vacuum vaporization in an arbitrary plane cross section of a spraying system containing a 
point vaporizer and a substrate of arbitrary form. 

The polar coordinate system O9~ is introduced in the given cross section; the equation 

of the substrate then takes the form 

P = ~ O), (1) 

where ~(~) is a differentiable function on the segment [~i, ~2] Suppose that a source vapor- 
izing the given interval in the time interval [0, T,] toward the surface in Eq. (1) is placed 
at point 0. It is assumed that there are no processes of revaporization or migration of ad- 
atoms of the condensate the substrate. Presuming that the trajectory of any vaporizing 
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